
which bubble compress ion  is not of a s eve re  ch a r ac t e r  (collapse),  leading to the emiss ion  of an acoust ical  
pulse,  comparab le  in magnitude to the pulse produced at breakdown. To inc rease  the degree  of compress ion  
it is n e c e s s a r y  to dec r ea se  the value of the gas content p a r am e te r ,  which can be done by increas ing the ex-  
t e r n a l  p r e s s u r e .  
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S T R U C T U R E  O F  A S H O C K  W A V E  F R O N T  

IN A P O R O U S  S O L I D  

S.  Z .  D u n i n  a n d  V .  V .  S u r k o v  UDC 534.222.2 

The investigation of the na ture  of wave propagat ion in substances  with a disruption of continuity is im-  
por tant  for  s eve ra l  reasons:  The study of  shock heating of a porous ma te r i a l  in high-intensi ty waves makes  
it  possible  to deduce the equation of  s ta te  of  the continuous m a te r i a l  under anomalous conditions (megabar 
p r e s s u r e s  and t e m p e r a t u r e s  of the o rde r  of the melt ing point) [1]; the major i ty  of ma te r i a l s  a re  not continuous 
in na ture ,  and the wave propagat ion p r o c e s s  is l a rge ly  de te rmined  by the actnal s t ruc tu re  of the solid. 

In the investigation of shock waves in solids with a disrupt ion of continuity it is essen t ia l  to take the 
following considera t ions  into account.  F i r s t ,  as in the analysis  of a shock front  in gases  with re t a rded  ex-  
ci tat ion of ce r la in  degrees  of f reedom [1], the s t ruc tu re  of the shock t rans i t ion  in porous  solids must  be in-  
vest igated with r e g a r d  for  the iner t ia l  p rope r t i e s  of the medium [2-4]. Thus,  in the shock loading of a porous 
solid to p r e s s u r e s  in the tens  of k i lobars  (such that the influence of heating of the substance can be neglected),  
the s t ruc tu re  of the wave front is affected by the po re - se l ec t ion  dynamics [2-4]. An investigation of this  type 
indicates that  the p r e s s u r e  in the substance depends not only on the densi ty  of the substance,  but also on its 
der iva t ives .  Second, a number  of theore t i ca l  and exper imenta l  studies [3-8] suggest  an appreciable  influence 
of the viscous  p rope r t i e s  of the porous  m a t e r i a l  on the nature  of the propagation and attenuation of shock 
waves.  Thi rd ,  e s t imates  [2-4, 9] show that  the poros i ty  changes significantly only when the en t i re  mass  of  
the sol id substance en ters  into the ducti le s ta te .  

In the p re sen t  study we discuss  the c h a r a c t e r i s t i c s  of low-intensi ty  shock wave propagation,  where  the 
influence of heating of the subs tance  can be neglected (tens ofk i lobars ) ,  but the actual nature  of wave p ropa-  
gation is l a rge ly  de te rmined  by the behavior  of the porous  solid in the ductile s ta te ,  v iz . ,  the po re - se l ec t i on  
dynamics  exe r t s  a s t rong influence on the wave s t ruc tu re .  

1. The shock prof i le  is invest igated in the example of a plane s ta t ionary  wave propagating with veloci ty  
D. In this  case  all  physica l  quantities (density,  pa r t i c le  veloci ty,  etc.) turn  out to depend only on one var iab le  

= x - IX, and the equations of mass  and momentum conservat ion  a re  eas i ly  integrated.  Consider ing media 
of low poros i ty ,  we can neglec t  the dependence of the s t r e s s  devia tor  on the poros i ty  factor  [10] and r ega rd  it  
as constant ,  with a value c lose  to the yield point of  the solid. Then in a coordinate  sys tem attached to the 
shock wave the equations are  wr i t ten  in the fo rm 

poD ---- p(D v), p -- Po ---- povD, (1.1) 

Moscow. T rans l a t ed  f rom Zhurnal  Pr ikladnoi  Mekhaniki i Tekhnicheskoi  Fiziki ,  No. 5, pp. 106-114, 
Sep tember -Oc tobe r ,  1979. Original  a r t i c l e  submitted September  27, 1978. 
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where p, v, and p are  the p r e s s u r e ,  par t ic le  velocity,  and density of the porous medium and depend on one 
var iable  ~ (the p r e s s u r e  p contains a viscous t e r m  proport ional  to dv/dg); P0 is the p r e s s u r e  in the elast ic 
medium; and we cons ider  the initial densi ty P0 to be equal to its value in the undisturbed medium. To obtain 
the p r e s s u r e - d e n s i t y  relat ion in the plast ic wave it is n e c e s s a r y  to analyze the ducti le-f low dynamics of the 

pores .  

The medium is homogeneous in the initial state.  We part i t ion the entire substance into identical unit 
cel ls ,  each containing a single pore ,  and assume that all  pores  are  spher ical  with radius a 0. It is p rac t ica l  
to adopt a sphere as the equivalent unit cell .  The initial cell  radius b 0 must  be such that the total mass  of 
all the ce l l s  pe r  unit m a s s  is equal to unity, i.e., 4~Npm(b ~ - a3o)/3 = 1, were  N is the number  of cells  per  
unit mass  and Pm is the density of the solid (matrix).  The volume variat ions of the isolated cell  at the lead- 
ing shock front is cha rac te r i zed  by var iat ion of the poros i ty  of the medium. 

We cons ider  shock waves for which the width A of the leading front is much g r e a t e r  than the cha r ac -  
t e r i s t i c  cel l  dimension X. Then the relat ive var ia t ion of the macroscopic  pa r ame te r s  of the medium (such 
as the average  densi ty or  par t ic le  velocity) over  the space scale k of the isolated cell  is of the o rde r  (~/Zx) << 
1. It may  be assumed in this approximation that the given cell  par t ic ipates  in two independent motions at the 
wave front; as a unit whole with the par t ic le  velocity v of the medium and subject to compaction under the 
action of the p r e s s u r e  in the wave. 

We define the macroscop ic  poros i ty  p a r a m e t e r  a as the rat io of the total volume of the isolated unit 
cell  with coordinates  x3 t to the volume of the solid within the unit cell.  Assuming that the s t r e s s  distr ibution 
near  the center  of the pore remains  spher ica l ly  symmet r i ca l  during the deformation p roces s  and that the cell  
re ta ins  a shape close to a hollow sphere ,  we obtain 

= b3/(b3 - -  a3)' (1.2) 

where  b and a a re  the outside and inside radii  of the equivalent sphere  at point x at t ime t. Now iin the co-  
ordinate sy s t em attached to the center  of the pore  the equation of motion of the medium descr ibing ~he com-  
paction of the cell  is wri t ten in the fo rm 

9 m clu/dt = O~/Or  } -  2(% -- ~ ) / r ,  (1.3) 

where  u is the par t ic le  veloci ty of the medium toward the center  of the pore  and ~r  and ~0 = ~r are  the r a -  
dial and tangential  components of the local s t r e s s  tensor .  The following condition holds on the surfitee of the 
pore:  

~ [ r = a  =" O. 

The densi ty Pm of the solid medium is constant  in the investigated p r e s s u r e  range.  Then the variat ion of the 
density p of the medium is solely attr ibutable to var ia t ion of the poros i ty .  It  follows f rom (1.2) that 

P ---- Pm 'oz. (1.4) 

The relat ionship between the initial position of point r 0 and its coordinate r at t ime t can be derived f rom 
the conditions of mass  conservat ion of the cell  and incompress ib i l i ty  of the solid component of the medium: 

~ ~ a 3 _ a  ~ b ~ _ a ~  bo ~ ~o ~. �9 - - t o =  o, = - -  { 1 . 5 )  

Differentiating the f i r s t  relat ion in (1.5) with respec t  to the t ime,  we obtain the par t ic le  velocity f rom (1.2) 
and (1.5): 

3 (% -- i) r ~" (1o6) 

The solid phase of the medium obeys the flow condition for v iscoplas t ic  media  [11]: 

~,--~o = Y - } - 2 q ( a u / O r - - u / ~ ,  (1.7) 
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where  Y and ~ a re  the yield point and v i scos i ty  coeff icient  of the solid. Applying express ions  (1.6) and (1.7) 
and the fact that  the p r e s s u r e  Pm in the solid component (matrix) of the medium is descr ibed  by the equation 

Pro= --(% ~- 2~e)/3, 

we rewr i t e  Eq. (1.3) in the fo rm 

pm'lu/dt = Opm/Or ~ 2Y/r. 

The v i scos i ty  coeff icient  in this  case  en te r s  only into the boundary conditions: 

2Y -t- 4TI [ au u~{ 
Pm = T - -  ~ ,, a-7 -- ) - ]  I,.=,," 

(1.8) 

(1.9) 

We integra te  Eq. (1.8) ove r  the radius  f rom a to r with r eg a rd  for  express ions  (1.4), (1.6) and condition 
(1.9). As a resu l t ,  we have 

r 4~lPmP pm(r t) = ~ -  + er ln  ~ ~ ~p (-~-: ~) ~(%-,)p'Lk -V-/~T-7/ ~(%-,)p' ( 7 - 7  " (I.I0) 

Averaging the p r e s s u r e  dis t r ibut ion (1.10) in the vicini ty of the pore  over  the volume of the unit cel l  and 
using re la t ions  (1.2) toge ther  with the condition of incompress ib i l i ty  of the solid, we obtain 

p = p, (p) + po (p, ~,) + p,, (p, ~,, ~,), 

where  
Pm 4~ . 

p,(p) = ~ l,, "m--" ; P" (p' ~') = a'(,,~,,)' 

= (% - -  t)2~81~ s / ' - ' ' ' - ' ' - ~  ~- - -  3 (Pro-- p ) i , 8  (pm-p) ';8+ ~ ( p m - , o )  ','~ - . 

(1 .11)  

The first two terms in (1.11) coincide with the corresponding terms obtained in [3, 4], but the last term differs 
insofar as the authors of the cited works used the static relation between the average pressure and the press- 
ure on the surface of the cell (in dynamic analysis this relation must take account of the dynamics of the be- 

havior of the porous medium). 

The expression for p can also be augmented with a term accounting for the viscous resistance of the 
medium during motion of the cell as a unit whole. Estimates show that this term is of an order of magnitude 
1/(~ - 1) smaller than the term describing viscous friction associated with motion of the substance toward 

the c e n t e r  of the pore .  

2. Relat ions (1.1) and (1.11), in which it is r equ i red  to t r a n s f o r m  to the var iab le  g, descr ibe  the p ro -  
fi le of  a s ta t ionary  plast ic  wave.  The e las t ic  wave p r e s s u r e  corresponding to t rans i t ion  of the substance into 
the ducti le s tate  is 

2Y in Pm 
P0 = 3 Pro-- P0" 

The equation for  the s t ruc tu re  of  the shock front  is conveniently wri t ten  in the following dimensionless  form,  
which is solvable for  the function ~: 

(~, 2 3 (a --  l )  I'3 ~ + ~ . /3  (a - -  i )  1/3. ~" 

% - - ~  , 2k2. a o(cr 4kRcd 
(2,1) 

where  we have introduced the d imens ionless  var iab le  $ -- ~/a o (the p r im e  signif ies different ia t ion with r e -  
spec t  to ~) and the d imensionless  p a r a m e t e r s  k and 11: 
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The quanti ty R -1 is  the analog of the Reynolds  number  for  solid media .  

F o r  a wave propaga t ing  in the pos i t ive  } d i rec t ion  the boundary  equations for  Eq. (2.1) have the f o r m  

a ' - ~ 0 ,  ~ - ~ a 0  as ~ - ~ = - ~ .  (2 .2)  

The solutions of (2.1) that  do not pa s s  through the s ingular  point a = 1, ~ '  = 0 desc r ibe ,  in the genera l  case ,  
nonl inear  damped  o r  per iod ic  o s c i l l a t i o n s .  It  is e s sen t i a l  to note that ,  owing to the i r r e v e r s i b i l i t y  of  the 
s t r e s s - s t r a i n  d i a g r a m  for  porous  sol ids [12], exp re s s ions  (1.11) and (2.1) a re  appl icable only in the loading 
phase ,  when a '  > 0 and p '  < 0. During unloading ( s t r e s s  re l ief) ,  the med ium behaves  as an e las t ic  o r  e l a s to -  
p las t i c  med ium (in which case  the ductile flow region is v e r y  smal l  [12]) and is not desc r ibed  by re la t ions  
(1.11) and (2.1). Below, we inves t iga te  the behavior  of the solution up to the f i r s t  turning point (sat isfying the 
condition ~ '  = 0) on the in tegra l  cu rve  descr ib ing  the solution of (2.1). 

3. We analyze  s e p a r a t e l y  the influence of the p a r a m e t e r s  R and k on the shock prof i le .  I f  the v i scos i ty  
of  the solid phase  is c lose  to zero ,  we can put R = 0. Equation (2.1) is in tegrable  at once in this  case .  Tak -  
ing (2.2) into account,  we obtain 

2u~ ~ k  2 %~6~-~-1n a~ a - - t  ~ ~21n'~o----~ ) (u), (3.1)  

h(~) = (~-- 1)-"V3 + [(~ -- ~)~/~-- ~/~]/'2 

The  denomina tor  in (3.1) is g r e a t e r  than ze ro  for  any values  of a > 1, and so exp re s s ion  (3.1) is meaningful  
when the n u m e r a t o r  is a lso  g r e a t e r  than ze ro .  In pa r t i cu la r ,  the r e q u i r e m e n t  that  a '2 > 0 as a -"  a0 yields  
the condition 

k~<ko ~=3(%-~)  V 2r% 2% or D ~ Dmin = 
3pro( % -- i) (3.2) 

The  quanti ty Dmin is the m i m i num  veloc i ty  of propagat ion of shock waves  in the inves t iga ted  porous  med ia  
[13]. 

I f  a = ~1 > 1 at the turning point,  then the vanishing of a '  is equivalent to  vanishing of the n u m e r a t o r  
in (3.1). Consequent ly,  z e r o - v a l u e d n e s s  of the n u m e r a t o r  in (3.1) de t e rmines  the re la t ionsh ip  between k and 
the quanti ty a at the turning point and, with r e g a r d  for  re la t ions  (1.1) and (1.4), the c u r v e  of m a x i m u m  devia -  
t ions of the densi ty  and p r e s s u r e  for  R = 0 f r o m  the i r  initial  va lues .  A compar i son  of the  l a t t e r  curve  with 
the s ta t ic  c o m p r e s s i o n  curve  shows that  for  a given p r e s s u r e  ampli tude the min imum p o r o s i t y  a t tu rns  out 
to be s m a l l e r  in the dynamic case .  The po res  a r e  c o m p r e s s e d  at the shock front  in such a way as  to make  
the i r  rad ius  s m a l l e r  than the equi l ibr ium value obtained as the r e su l t  of s ta t ic  c o m p r e s s i o n .  

We now cons ider  a shock wave of m ode ra t e  intensi ty,  in which the var ia t ions  of the dens i ty  and poros i ty  
a r e  smal l ,  (~0 - al) << 1. Knowing that  ~ '  van ishes  twice for ~ = s 0 and a = a l ,  we make  use  of the s m a l l -  
ne s s  p a r a m e t e r ,  expanding the r igh t -hand  side of express ion  (3.1), f i r s t  with r e s p e c t  to (~0 - a) and then 
with r e s p e c t  to  ( a  - ~1): 

(3.3) 

Now the following re la t ion ,  deduced f r o m  the condition ~ '  = 0 for  a = a 1, mus t  be sat isf ied:  

2a 1 A- % k2 1 /  2Yao 
2% (%--1) 0 or D =  V p m ( % -  t) (2% +%)  ~Dm~n" (3.4) 

The  p r e s e n c e  of the s ingular  point ~ = 1 r e s t r i c t s  the region of convergence  of the s e r i e s  in expansion with 
r e s p e c t  to the s m a l l  p a r a m e t e r .  T h e r e f o r e ,  the given approx imat ion  is  valid under  the condition 

(ao - -  a , ) ' ( a l  - -  ~) < 1  or r + i . ~  2a1. (3.5) 
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In tegra t ing  (3.3) and set t ing the constant  of integrat ion,  which de t e rmines  the posi t ion of the r e f e r e n c e  
point ,  equal  to ze ro ,  we obtain the equation for  the wave prof i le  in the  f o r m  

- -  ~x  ---- (CZo - -  czl) t h  s ( ~ / A ) ,  (3.6) 

where  

~o% V ~ 3 ( % _ t )  h(~,) 
A = (C~o - -  t ) 1 / 3  (C~ 0 J[- 40~ 1 - -  2 )  (0~ 0 - -  CC1) ~ 

Equation (3.6) d e s c r i b e s  a so l i t a ry  s y m m e t r i c a l  wave.  However ,  the solution is appl icable  only in the loading 
phase  in the in t e rva l  of  va lues  of  g f r o m  0 to 0% F o r  g < 0 and up to the next  turning point, the p r e s s u r e -  
dens i ty  re la t ion  is  de t e rmined  by the e las t ic  behav io r  of  the porous  substance .  Thus,  for  negat ive values  of 

the wave  prof i le  has  a complex  o sc i l l a t o ry  c h a r a c t e r .  The effect ive width A of the weak shock front  tu rns  
out to be independent of the p r o p e r t i e s  of  the sol id phase  and is  de te rmined  sole ly  by the g e o m e t r y  of the pore  
space .  The init ial  r e q u i r e m e n t  A >> k > a 0 is sa t i s f ied  under the condition ~/s  0 - a 1 << 1. 

4. We now inves t iga te  the case  in which the v i s cos i t y  of  the solid med ium is l a rge  and the iner t ia l  
t e r m s  in (2.1) can be neglected.  The  equation for  the s t ruc tu re  of the wave front  can be obtained fo rma l ly  
f r o m  (2.1) by let t ing a 0 tend to ze ro .  As a resu l t ,  we have 

4kR da a 0-vc - 2k 2. % ( c ~ t )  
3cz(a- - i )  d~ ao ~ t - T m ~ - - ~ 0 - - - - ~  ) ' (4.1)  

where  R = ~/pTp-~YmY. Making use  of  the fact  that  d s / d g  > 0 at the loading wave front,  we infer  that  D ~- Dmin,  
where  Dmin is  g iven by  e x p r e s s i o n  (3.2). We solve  Eq. (4.1) for  a weak shock wave.  Expanding (4.1) with 
r e s p e c t  to the s m a l l  p a r a m e t e r  as in Sec.  3, we obtain the express ion  

d...~ = ( %  - -  v.) (=  - -  cr (2c~ 1 - -  t }  V '3"  
- -  / -  

d~ 2/t% u 2% (%. ~ 't) (4.2)  

Rela t ions  analogous to (3.4) and (3.5) mus t  be sa t i s f ied  in this  c a se .  In tegra t ing  (4.2) and set t ing the constant  
o f  in tegra t ion  equal  to ze ro ,  we find 

% exp ([j/A) "+" a l  
----- e x p ( U A ) §  ~ ( 4 . 3 )  

w h e r e  

A = 2~%-d2% (%- - t )  
(% - %) (2% .-- l ) ' l /~"  

The m i n i m u m  poros i ty  s I is at tained for  g - "  _0% Osci l la t ions  at the front  a re  absent ,  and the wave prof i le  
has  a monotonic c h a r a c t e r .  The shock adiabat  fo r  the subs tance  coincides  with the s ta t ic  c o m p r e s s i o n  cu rve .  

The condition A >> X holds if  R / ( a  o - s I} >> b 0. 

5. We de t e rmine  the asympto t ic  behav io r  of the solution of  (2.1} for  a weak shock wave,  taking iner t ia l  
and v i scous  t e r m s  into account.  We make  an o r d e r - o f - m a g n i t u d e  c o m p a r i s o n  of the t e r m s  enter ing into the 
iner t ia l  component .  I na smuch  as  s w ~ (a0 - s ) / ~  2, s '2 ~ (s0 - s}2/~2, and for  a weak shock wave ( s  0 - s} << 
1, we can  neglec t  the second t e r m ,  which is p ropor t iona l  to a '2, in compar i son  with the f i r s t .  Then,  expand-  
ing the coeff ic ients  of the de r iva t ives  and the f r ee  t e r m  and introducing the va r i ab le  y = s - s0, we a r r i v e  
at  the a sympto t i c  re la t ion  

/ (C,o) ~," - kRZ (,,.} ~,' - -  ( i  - -  k'/k~) (V/~'o) = 0, (5 .1)  

where  

f (ao) = ( ~  - -  1) -2/sh (%);  g (%)  = (4/3) (% - -  i )  -1. 
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F o r  % > 1 the functions f and g are  s t r ic t ly  g rea te r  than ze ro .  Solving Eq. (5.1) subject to the boundary 
conditions (2.2), we obtain 

~ o - - a  = c  exp (--~/A), (5.2) 

where 

2ao/(%) 

A = _ kRg (%) + 1 / [ k R ~  (%)1" + 0 --  ~"-lk~) 4S (%)/:~; 

c i s  a constant  of integrat ion.  

We analyze two l imiting cases .  If the v i scos i ty  of the solid substance is small ,  we can expand (5.2) with 
r e spec t  to the smal l  p a r a m e t e r  R to obtain an express ion for the charac te r i s t i c  space  scale  A in which the 
amplitude undergoes an e-fold variation: 

0 - k~/ko ~) i + .~ V I (%) 0 - kVk~)/% " (5.3) 

Equation (5.3) is consis tent  with the resu l t s  obtained in Sec. 3 for the case R = 0. 

If  the p a r a m e t e r  R is not small ,  then relat ion (5.2) can be simplified on the basis  of the fact that for a 
weak wave k ~ k 0. As a result ,  we have 

%g (%) k~  I A =  . k~ ~ ~. . i - ; - - i  
(,1 - ko) 

(t - k2 ~k~) l (%) t 

%~:~ (%) k~'R2 i" 

The space scale A turns out to be prac t ica l ly  independent of the pore radius a 0 and is de te rmined  
mainly by the p a r a m e t e r  R (see Sec. 4). 

6. Equation (2.1) is integrated numer ica l ly  in the general  case .  The resul ts  of calculations of the shock 
prof i les  for cer ta in  values of the p a r a m e t e r s  R and k are  given in Figs .  1-4. The initial poros i ty  of the s u b -  
s tance is a 0 = 1.2, for which k 0 = 0.5. Curves  1-5 in Figs .  1-4 correspond to k = 0.1, 0.2, 0.3, 0.4,. and ~.~75 
0.475. For  R = 0 (Fig. 1) the width of the shock front is of the o rde r  of a few pore radii  a 0. The wave front 
in Figs .  2 and 3, corresponding to R = 0.24 and 1.6, is longer.  Curves  5 are  well descr ibed in this case  of 
express ion  (4.3) obtained for a weak shock with neglect of the inert ial  t e rms  in Eq. (2.1). 
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Figure 4 gives the results of the calculations for R > 1O. In this interval of R the inertial terms can 
be neglected everywhere except in the small region where ~ -- 1, in which case the wave profile is described 
with sufficient accuracy by expression (4.1). The parameter R for real  media varies between very wide 
limits, roughly from 10 -~ to 103-104. This result  is attributable to the fact that the viscosity ~ and charac- 
ter is t ic  dimension of the pores for various substances, according to the experimental data [4-7], d i f ferby 
several orders of magnitude. 

7. The foregoing analysis of the structure of the shock front in a viscoplastic porous medium with 
allowance for the pore-flow dynamics indicates that the fundamental laws governing the propagation of shock 
waves are determined by the complex dependence of the pressure on the density and its derivatives. This 
dependence is obtained from an analysis of the dynamic behavior of unit cells of the medium containing the 
pores at the wave front. 

The width of the front and the profile of the wave depend on three dimensionless parameters: ~0, k = 
~rY/(PmD2), R = ~ / ( a 0 ~ ,  where the existence of plastic shock waves is possible only under the condition 

k - ~ k  0 or  D ~ D m i  n. 

The investigation of the analytical solution describing a weak shock wave with viscosity neglected shows 
that the width of the front is ~ a 0 / ~  0 --- a 1 and is determined mainly by the geometry of the pore space. If 
the dynamic terms can be neglected in the equations, the characteristic width of the weak shock front depends 
on the number R = ~/Y~/Y~Pm and is of the order of magnitude R/(~0 - al). 

The strong shock profile obtained by numerical methods depends largely on the shock velocity and on 
the properties of the porous medium (parameters R and ~0). For R ~ 10 we neglect inertial effects in the 
ductile flow of the pores, and the structure of the shock front is determined mainly by the viscoplastic prop- 
ert ies  of the porous medium and the shock velocity. 
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